

Centre for Energy Research

Dosimetry Systems and Procedures in Traditional Radiation Processing and Wastewater Treatment Technologies

András Kovács

Centre for Energy Research Eötvös Lóránd Research Network

Regional Workshop on Radiation Processing for Environmental Applications Ankara, Türkiye, (RER1021- EVT2204305) 17-21. October, 2022

It is one of the 18 research centres of **Eötvös Loránd Research Network** (Hungarian Academy of Sciences) One of the **Technical Support Organizations** of the Hungarian Atomic Energy Authority Main **Technical Consultant** of the **Paks NPP**

Nuclear Security Support Centre of IAEA NSSC Network together with the Hungarian Atomic Energy Authority

Operating a centralized **National Nuclear Forensics Laboratory** in Hungary (working together with the relevant national organizations and authorities)

IAEA Collaborating Centre for Nuclear Forensics

Governmental Decree (1035/2012) indicates Hungary's National Security Strategy and 490/2015 G.D. **delegates nuclear forensics to EK** (original: 17/1996)

EK has about ~400 *employees (~65 % scientists)*Age distribution is acceptable (50% of researchers are below 40)
Overall budget is 10-15 M€
21 departments (laboratories)

To assure, that

- the required (biological, chemical, physical) effect is achieved and
- the radiation technology is performed safely
- the absorbed dose and dose distribution in the product

and

its relationship with irradiation facility parameters

(like irradiatio/dwell time, position of source rack, electron energy and current, conveyor speed, scanning width and homogeneity, etc.)

₩

have to be measured and controlled with suitable <u>dosimetry systems!</u>

- Absorbed dose is the quantity of ionizing radiation energy imparted per unit mass of a specified material (*d'*/*dm*), where *d'* is the mean incremental energy imparted by ionizing radiation to matter of incremental mass *dm*.
- In radiation processing, validation and process control (sterilization, polymer processing, food irradiation, environmental applications, etc.) depend on the measurement of absorbed dose.
- Measurements of absorbed dose shall be performed using a dosimetric system or systems having a known level of accuracy and precision.
- The calibration of each dosimetric system shall be traceable to an appropriate national standard.
- Classification: *primary-, reference-, transfer standard and routine* systems;

Centre for Energy Research

Dosimetry Systems

Dosimeter system	Method of analysis	Useful dose range, Gy	Nominal precision limits	References
Fricke solution	UV – spectro- photometry	$3x10 - 4x10^2$	1 %	ASTM E 1026 - 04
Ceric – cerous sulphate	UV – spectro- photometry	$10^3 - 10^6$	3 %	ISO/ASTM 51205
Potassium dichromate	UV-VIS spectrophotometry	$5x10^3 - 4x10^4$	1 %	ISO/ASTM 51401
Ethanol-mono- chlorobenzene	Titration,or HF oscillometry	$4x10^2 - 3x10^5$	3 %	ISO/ASTM 51538
L - alanine	EPR	1 – 10 ⁵	0.5 %	ISO/ASTM 51607
Perspex systems	VIS - spectro- photometry	$10^3 - 5 \times 10^4$	4 %	ISO/ASTM 51276
FWT – 60 film	VIS - spectro- photometry	10 ³ - 10 ⁵	3 %	ISO/ASTM 51275
B 3 film	VIS - spectro- photometry	10 ³ - 10 ⁵	3 %	ISO/ASTM 51275
Cellulose triacetate	UV – spectro- photometry	10⁴ - 10⁶	3 %	ISO/ASTM 51650
Calorimetry	Resistance/ temperature	$\frac{1.5 \times 10^{3} - 5 \times 10^{4}}{5 \times 10^{4}}$	2 %	ISO/ASTM 51631

a./ Based on metrological properties: types I and II; (E 2628 – 09, ASTM Standard);

Type I:

- dosimeter of high metrological quality; its response is affected by individual influence quantities in a well defined way so, that it can be expressed in terms of independent correction factors; (Fricke, dichromate, ceric-cerous sulphate, ECB, alanine/EPR).

Type II:

- dosimeter, its response is affected by influence quantities in a complex way – cannot be expressed in terms of independent correction factors; (process calorimeter, CTA, Sunna, PMMA, FWT, B3, TLD, etc).

b./ Based on field of application:

- Reference standard systems (type I);

Used to calibrate dosimeters for routine use, therefore high metrological qualities, low uncertainty and traceability to appropriate national or international standards are needed. +/- 3 % (k = 2);

- Routine systems (type II);

Used for routine absorbed dose measurements (i.e. dose mapping and process monitoring). Traceability to national or international standards is needed.

+/- 6 % (k = 2);

c./ Chemical and physical methods of dosimetry:

• Chemical methods of dosimetry:

Liquid systems:

- Aqueous dosimetry systems: Fricke, dichromate, ceric-cerous;
- Organic dosimetry system: ethanol-monochlorobenzene solution;

Solid systems:

Cellulose triacetate, polymethylmethacrylate, radiochromic films (FWT-60, B3 (GEX), GafChromic, Sunna, alanin/EPR;

• Physical methods of dosimetry:

Calorimeters: primary standard systems and process calorimeters;

• Determination of absorbed dose in product specific dosimeter systems;

• The radiation absorption characteristics of the product and the dosimeter material should be similar in terms of atomic number;

↓ absorbed dose is material dependent

• According to the process to be controlled (i.e.: gamma, electron, X-ray);

• According to dosimeter characteristics;

(dose, dose range, energy, cost, reproducibility, resolution, stability, etc);

Dose measurements depend on various methods (e.g.):

- Temperature increase (calorimeters);
- Colour change (perspex, radiochromic systems);
- Free radical concentration (alanine);
- Conductivity change (ECB, aqueous-alanine solution);
- Radiation chemical oxidation (Fricke);
- Radiation chemical reduction (dichromate, ceric-cerous);
- Optically stimulated luminescence (Sunna);

Primary standard systems:

Centre for

Energy Research

- Dosimeter of the highest metrological quality, established and maintained as an absorbed dose standard by a national or international standards organization for calibration of radiation environments (fields);

- Application is based on measurement of basic physical quantities (ionization current and temperature);

- Most common systems: ionization chambers, calorimeters; (primary standard laboratories: e.g. NPL);

- No calibration is needed;

Reference standard systems:

- Dosimeter of high metrological quality used as a standard to provide measurements traceable to measurements made by primary standard systems;
- These systems <u>require calibration</u> and are used to calibrate radiation environments and routine dosimeters;
- Solid phase dosimetry systems : *alanine (pellet, rod, film);*
- Liquid phase dosimetry systems : Fricke solution; potassium dichromate solution; ethanol-monochlorobenzene solution; ceric-cerous solution;
- Process calorimeters;

-ESR analysis: measures free radical concentration;

- Dose range: 10 Gy 100 kGy;
- Reproducibility < 0.5 %;

Dose

Transient dose

Radiation-induced oxidation of ferrous ions, Fe(II), to ferricions, Fe(III), in acidic-aqueous solution: $G(Fe^{3+}) = 15.6$ Dose (Gy) = 2.74 x 10² x Δ O.D. (25 °C)Dose range: 30 – 400 Gy.Spectrophotometric read-out at 304 nm.

- Colour change measured by spectrophotometry (440 nm);
- Dose range: 10 50 kGy;
- Reproducibility < 0.5 %;

Radiolytic reduction of the ceric ions (Ce⁴⁺) to cerous ions (Ce³⁺) in an aqueous - acidic solution.

- 1. Ceric sulphate solution: Spectrophotometric read-out: 320 nm. Dose range: 1- 200 kGy;
- 2. Ceric cerous solution: Potentiometric read-out: Dose range: 0.5 - 5 / 5 – 50 kGy;

Centre for Energy Research

Ethanol-monochlorobenzene solution:

- HCl formation, its concentration is the measure of absorbed dose
- Evaluation:
- Chemical titration reference system:
- G(HCl) = 5.6;
 Dose range: 0.05 100 kGy;
- Oscillometry routine system;
- non-destructive analytical method:
- reevaluation is possible years later;
 Dose range: 1 200 kGy;
- Reproducibility: +/- 3 5 %;

1.5 - 4 – 10 MeV:

- graphite, water, PS calorimeters (1.5 50 kGy);
- calibration, nominal dose measurements;
- reproducibility: less than 1 %;

Transfer standard systems:

Centre for Energy Research

> - Intermediary system with high metrological qualities, suitable for **transferring dose information from an accredited/standard laboratory to an irradiation facility** to establish traceability (comparing absorbed dose measurements)⇒dosimetry intercomparison exercise;

- These systems require calibration;
- Dosimetry systems:
 - alanine;
 - ethanol-chlorobenzene (ECB);
 - potassium dichromate;
 - ceric-cerous,

Routine systems:

-Dosimetry systems used in radiation processing facilities for absorbed dose mapping and process monitoring;

-Systems, capable of giving reproducible signals;

-These systems require calibration;

-Dosimeter systems:

- Fricke solution;

-Perspex (red-, amber-, Gammachrome);

-radiochromic films (FWT-60, B3 - Gex, Gafchromic, Sunna);

-ECB, ceric-cerous solutions;

-Process calorimeters (water, graphite, polystyrene);

Colour change - spectrophotometry; Dose range: 0.5 – 50 kGy; Reproducibility < 3 %; Post irradiation change of signal;

Centre for

Energy Research

Spectrophotometric readout:

	GEX(B3)	FWT	Gafchromic
Dose range, kGy:	3 – 150	3 – 150	0.01 - 40
Wavelength, nm:	554	510, 605	670, 633, 580, 400

Stability: heat treatment after irradiation; packaging (UV);

Aqueous – alanine solution (1 – 100 kGy):

Fig. 2.

Oscillometric response of alanine solutions as a function of dose at various dose rates (⁶⁰Co irradiation), electron energies and currents (electron irradiation). ⁶⁰Co irradiation: 0.13 kGy/h: □;3.5 kGy/h: Δ;30 kGy/h: ο; electron irradiation: 4 MeV, 2.6 µs, 13 µA: ◊; 4 MeV, 2.6 µs, 26 µA: ×; 10 MeV, 0.5 µs, 0.4 A: +; 10 MeV, 1 µs, 1 A: *; 10 MeV, 4 µs, 1 A: •;

Principles:

Centre for

Energy Research

LiF dispersed uniformly in PE (1 cm x 3 cm x 0.4 cm);

Colour centers (F-, M-, N-, R centers) form due to ionizing radiation;

Red, green or IR OSL or UV absorption used for dosimetry;

Application possibilities:

Evaluation of green OSL (200 Gy – 250 kGy);

Evaluation of UV absorbance (5 – 100 kGy);

Evaluation of IR OSL (10 Gy – 10 kGy);

Environmental Effects on Dosimetry Systems

Dosimeter	Measurement time after irr.	Humidity	Dose rate (Gy s ⁻¹)	Irradiation temp. coeff., (°C) ⁻¹
Alanine	24 hours	yes	< 10 ⁸	+ 0.25 %
Dichromate	24 hours	no	$0.7 - 5x10^2$	- 0.2 %
Ceric-cerous	immediately	no	< 10 ⁶	conc. dep.
ECB	immediately	no	< 10 ⁸	+ 0.05 %
Calorimeters	immediately	no	< 10 ⁸	-
Perspex	24 hours	yes	< 10 ⁵	+ 1 %
FWT-60	5 min/60 °C	yes	< 10 ¹³	+ 0.2 %
B3	5 min/60 °C	yes	< 10 ¹³	+ 0.3 %
Sunna	20 min/70 °C	no	< 10 ¹³	+ 0.2 %

Aim of calibration:

Determine relationship between response of a dosimeter and absorbed dose:

Traceability has to be achieved!

Calibration:

- 1. Dosimeters;
- 2. Measuring instrument;

Types of calibration:

- 1. In a calibration facility verification is needed;
- 2. Calibration in-plant all routine irradiation and calibration irradiation conditions are the same;
- 3. Use of calibration phantoms;

The steps of validation as described in the EN ISO 11137 Standard:

- Process definition: establishing maximum acceptable and minimum required dose;
- Installation qualification (IQ): the irradiation facility has been supplied and installed according to its specifications;
- Operational qualification (OQ): to demonstrate the capability of the equipment to deliver appropriate doses;
- Performance qualification (PQ): to measure <u>dose map</u> in real product;

In addition:

- Routine process control: to measure dose at monitoring positions;

Installation Qualification

EB facility:

To determine beam characteristics

by dosimetry;

Dosimetry: Calorimeters, ECB, Sunna, alanine, Gex (B3), FWT-60, dichromate; Gamma facility: **No specific dosimetry requirements** to verify operation within specification;

To characterize the irradiation facility relating plant parameters to absorbed dose (in reference product):

Nominal dose vs. irradiation/dwell time, *dose distribution*, *process interruption; Dosimeters: Dichromate, ECB, ceric-cerous, Fricke, Gex (B3), FWT- 60, Perspex, Sunna, alanine;*

To characterize the irradiation facility relating plant parameters to absorbed dose (in reference product);

Nominal dose vs. conveyor speed/electron current/scanning width; beam homogeneity, scanning width; dose map in reference product, process interruption;

Dosimetry: Calorimeters, ECB, Sunna, alanine, Gex (B3), dichromate;

Operational Qualification (EB)

<u>Aim:</u>

To characterize the irradiation facility relating plant parameters to absorbed dose (in reference product);

Electron beam facility:

Nominal dose vs. conveyor speed/electron current/scanning width; beam characteristics; dose map in reference product, process interruption, electron energy; Dosimetry: Calorimeters, ECB, Sunna, alanine, Gex (B3), dichromate;

Performance Qualification

<u>Aim:</u>

Energy Research

1. To measure <u>dose map</u> in real product in order to locate D_{min}and D_{max} and to establish irradiation conditions according to required specifications, i.e.:

D(**product**) > **D**(**required**, e.g. sterilization dose)

and

D(product) < D(acceptable) To map one product container and then to irradiate 8-10 containers with dosimeters in the minimum and maximum dose locations!

- 2. To determine relationship between D_{min} and D_{max} and the dose at the routine monitoring position;
- **3.** Mathematical modelling to optimize the positioning of dosimeters during dose mapping;

Process Control

Aim:

Centre for Energy Research

1. Measurement of process parameters:

To measure dose at the monitoring position to verify that the irradiation process is within established/required limits \downarrow

knowing the relationship between D_{min}, D_{max} and D_{monitoring}.
 Dose measurement frequency: at beginning and end of run (min)
 Control and monitoring of operating parameters.

Controlled parameters:

Electron beam facility:

- Electron energy
- Beam current
- Scanned beam width
- Conveyor speed
- Routine dose

Gamma facility:

- Timer setting
- Other type of products present
- Routine dose (on product boxes)

Application possibilities:

Centre for Energy <u>Research</u>

- 1. Measurement of routine/process dose on conveyor quick measurement soon after irradiation :
 - calorimeters;
 - ECB;
 - alanine;
 - Sunna film;
 - FWT-60, B3;
- 2. Measurement on product at reference location:
 - alanine;
 - FWT-60, B3;
 - Sunna film;

Disadvantage: effect of (varying) product location on the measured dose;

Industrial and municipal waste water treatment;

Drinking water treatment;

Flue gas treatment:

(SO₂ (~ 95 %) and NO_x (~ 80 %) removal); (Calorimetry, MC, machine parameters);

Sludge decontamination;

(Perspex, Ceric-cerous solutions, ECB);

Medical hospital waste; (Perspex, Ceric-cerous solutions, ECB);

Temperature measurement before and after irradiation – Calorimetry;

ESR measurement of non-soluble additives (BaSO₄);

Methylene blue bleaching;

Radiation induced decomposition of CCl₄;

Aqueous-alanine solutions – conductivity/oscillometry measurements (1 – 100 kGy);

Thank you for your attention!

Welcome to Hungary!

